A quantum chemical study of ZrO2 atomic layer deposition growth reactions on the SiO2 surface
نویسندگان
چکیده
Zirconium oxide (ZrO2) is one of the leading candidates to replace silicon oxide (SiO2) as the gate dielectric for future generation metal-oxide-semiconductor (MOS) based nanoelectronic devices. Experimental studies have shown that a 1–3 monolayer SiO2 film between the high permittivity metal oxide and the substrate silicon is needed to minimize electrical degradation. This study uses density functional theory (DFT) to investigate the initial growth reactions of ZrO2 on hydroxylated SiO2 by atomic layer deposition (ALD). The reactants investigated in this study are zirconium tetrachloride (ZrCl4) and water (H2O). Exchange reaction mechanisms for the two reaction half-cycles were investigated. For the first half-reaction, reaction of gaseous ZrCl4 with the hydroxylated SiO2 surface was studied. Upon adsorption, ZrCl4 forms a stable intermediate complex with the surface SiO2–OH site, followed by formation of SiO2–O–Zr–Cl surface sites and HCl. For the second half-reaction, reaction of H2O on SiO2–O–Zr–Cl surface sites was investigated. The reaction pathway is analogous to that of the first half-reaction; water first forms a stable intermediate complex followed by evolution of HCl through combination of a Cl atom from the surface site and an H atom from H2O. The results reveal that the stable intermediate complexes formed in both half-reactions can lead to a slow film growth rate unless process parameters are adjusted to lower the stability of the complex. The energetics of the two half-reactions are similar to those of ZrO2 ALD on ZrO2 and as well as the energetics of ZrO2 ALD on hydroxylated silicon. The energetics of the growth reactions with two surface hydroxyl sites are also described. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst
Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculation...
متن کاملReal-Time Study of CVD Growth of Silicon Oxide on Rutile TiO2(110) Using Tetraethyl Orthosilicate
The interaction of the rutile TiO2(110) surface with tetraethyl orthosilicate (TEOS) in the pressure range from UHV to 1 mbar as well as the TEOS-based chemical vapor deposition of SiO2 on the TiO2(110) surface were monitored in real time using near-ambient pressure X-ray photoelectron spectroscopy. The experimental data and density functional theory calculations confirm the dissociative adsorp...
متن کاملRapid atomic layer deposition of silica nanolaminates: synergistic catalysis of Lewis/Brønsted acid sites and interfacial interactions.
Rapid atomic layer deposition (RALD) has been applied to prepare various nanolaminates with repeated multilayer structures. The possible reaction pathways for RALD of the Al2O3/SiO2 nanolaminate using trimethylaluminum (TMA) and tris(tert-butoxy)silanol (TBS) are investigated by using density functional theory (DFT) calculations. The introduction of a Lewis-acid catalyst, TMA, can result in the...
متن کاملEffect of Amorphous Silica Addition on Martensitic Phase Transformation of Zirconia and Investigation of its Tetragonal Structure Stability Mechanisms
This work is focused on the effect of amorphous SiO2 addition on the phase transformation and microstructural evolution of ZrO2 particles. Considering the structural similarities between the amorphous ZrO2 and its tetragonal structure, XRD results showed initial nucleation of metastable tetragonal ZrO2 from its amorphous matrix upon heat treatment. This metastable phase is unstable in pure ZrO2...
متن کاملSelf-catalysis by aminosilanes and strong surface oxidation by O2 plasma in plasma-enhanced atomic layer deposition of high-quality SiO2.
Plasma-enhanced atomic layer deposition (PE-ALD) has been applied to prepare high-quality ultrathin films for microelectronics, catalysis, and energy applications. The possible pathways for SiO2 PE-ALD using aminosilanes and O2 plasma have been investigated by density functional theory calculations. The silane half-reaction between SiH4 and surface -OH is very difficult and requires a high acti...
متن کامل